Python模块及面向对象
模块(Module)
为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。在Python中,一个.py文件就称之为一个模块(Module)。
使用模块有什么好处?
最大的好处是大大提高了代码的可维护性。其次,编写代码不必从零开始。当一个模块编写完毕,就可以被其他地方引用。我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块。
使用模块还可以避免函数名和变量名冲突。相同名字的函数和变量完全可以分别存在不同的模块中,因此,我们自己在编写模块时,不必考虑名字会与其他模块冲突。但是也要注意,尽量不要与内置函数名字冲突。点这里查看Python的所有内置函数。
你也许还想到,如果不同的人编写的模块名相同怎么办?为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package)。
举个例子,一个abc.py
的文件就是一个名字叫abc
的模块,一个xyz.py
的文件就是一个名字叫xyz
的模块。
现在,假设我们的abc
和xyz
这两个模块名字与其他模块冲突了,于是我们可以通过包来组织模块,避免冲突。方法是选择一个顶层包名,比如mycompany
,按照如下目录存放:
1 | mycompany |
引入了包以后,只要顶层的包名不与别人冲突,那所有模块都不会与别人冲突。现在,abc.py
模块的名字就变成了mycompany.abc
,类似的,xyz.py
的模块名变成了mycompany.xyz
。
请注意,每一个包目录下面都会有一个__init__.py
的文件,这个文件是必须存在的,否则,Python就把这个目录当成普通目录,而不是一个包。__init__.py
可以是空文件,也可以有Python代码,因为__init__.py
本身就是一个模块,而它的模块名就是mycompany
。
类似的,可以有多级目录,组成多级层次的包结构。比如如下的目录结构:
1 | mycompany |
文件www.py
的模块名就是mycompany.web.www
,两个文件utils.py
的模块名分别是mycompany.utils
和mycompany.web.utils
。
** 自己创建模块时要注意命名,不能和Python自带的模块名称冲突。例如,系统自带了sys模块,自己的模块就不可命名为sys.py,否则将无法导入系统自带的sys模块。
mycompany.web
也是一个模块,请指出该模块对应的.py文件。
使用模块
Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用。
我们以内建的sys
模块为例,编写一个hello
的模块:
1 | #!/usr/bin/env python3 |
第1行和第2行是标准注释,第1行注释可以让这个hello.py
文件直接在Unix/Linux/Mac上运行,第2行注释表示.py文件本身使用标准UTF-8编码;
第4行是一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释;
第6行使用__author__
变量把作者写进去,这样当你公开源代码后别人就可以瞻仰你的大名;
以上就是Python模块的标准文件模板,当然也可以全部删掉不写,但是,按标准办事肯定没错。
后面开始就是真正的代码部分。
你可能注意到了,使用sys
模块的第一步,就是导入该模块:
1 | import sys |
导入sys
模块后,我们就有了变量sys
指向该模块,利用sys
这个变量,就可以访问sys
模块的所有功能。
sys
模块有一个argv
变量,用list存储了命令行的所有参数。argv
至少有一个元素,因为第一个参数永远是该.py文件的名称,例如:
运行python3 hello.py
获得的sys.argv
就是['hello.py']
;
运行python3 hello.py Michael
获得的sys.argv
就是['hello.py', 'Michael]
。
最后,注意到这两行代码:
1 | if __name__=='__main__': |
当我们在命令行运行hello
模块文件时,Python解释器把一个特殊变量__name__
置为__main__
,而如果在其他地方导入该hello
模块时,if
判断将失败,因此,这种if
测试可以让一个模块通过命令行运行时执行一些额外的代码,最常见的就是运行测试。
我们可以用命令行运行hello.py
看看效果:
1 | $ python3 hello.py |
如果启动Python交互环境,再导入hello
模块:
1 | $ python3 |
导入时,没有打印Hello, word!
,因为没有执行test()
函数。
调用hello.test()
时,才能打印出Hello, word!
:
1 | >>> hello.test() |
作用域
在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过_
前缀来实现的。
正常的函数和变量名是公开的(public),可以被直接引用,比如:abc
,x123
,PI
等;
类似__xxx__
这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的__author__
,__name__
就是特殊变量,hello
模块定义的文档注释也可以用特殊变量__doc__
访问,我们自己的变量一般不要用这种变量名;
类似_xxx
和__xxx
这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc
,__abc
等;
之所以我们说,private函数和变量“不应该”被直接引用,而不是“不能”被直接引用,是因为Python并没有一种方法可以完全限制访问private函数或变量,但是,从编程习惯上不应该引用private函数或变量。
private函数或变量不应该被别人引用,那它们有什么用呢?请看例子:
1 | def _private_1(name): |
我们在模块里公开greeting()
函数,而把内部逻辑用private函数隐藏起来了,这样,调用greeting()
函数不用关心内部的private函数细节,这也是一种非常有用的代码封装和抽象的方法,即:
外部不需要引用的函数全部定义成private,只有外部需要引用的函数才定义为public。
第三方模块
在Python中,安装第三方模块,是通过包管理工具pip完成的。
如果你正在使用Mac或Linux,安装pip本身这个步骤就可以跳过了。
如果你正在使用Windows,请参考安装Python一节的内容,确保安装时勾选了pip
和Add python.exe to Path
。
在命令提示符窗口下尝试运行pip
,如果Windows提示未找到命令,可以重新运行安装程序添加pip
。
注意:Mac或Linux上有可能并存Python 3.x和Python 2.x,因此对应的pip命令是pip3
。
例如,我们要安装一个第三方库——Python Imaging Library,这是Python下非常强大的处理图像的工具库。不过,PIL目前只支持到Python 2.7,并且有年头没有更新了,因此,基于PIL的Pillow项目开发非常活跃,并且支持最新的Python 3。
一般来说,第三方库都会在Python官方的pypi.python.org网站注册,要安装一个第三方库,必须先知道该库的名称,可以在官网或者pypi上搜索,比如Pillow的名称叫Pillow,因此,安装Pillow的命令就是:
1 | pip install Pillow |
耐心等待下载并安装后,就可以使用Pillow了。
安装常用模块
在使用Python时,我们经常需要用到很多第三方库,例如,上面提到的Pillow,以及MySQL驱动程序,Web框架Flask,科学计算Numpy等。用pip一个一个安装费时费力,还需要考虑兼容性。我们推荐直接使用Anaconda,这是一个基于Python的数据处理和科学计算平台,它已经内置了许多非常有用的第三方库,我们装上Anaconda,就相当于把数十个第三方模块自动安装好了,非常简单易用。
可以从Anaconda官网下载GUI安装包,安装包有500~600M,所以需要耐心等待下载。网速慢的同学请移步国内镜像。下载后直接安装,Anaconda会把系统Path中的python指向自己自带的Python,并且,Anaconda安装的第三方模块会安装在Anaconda自己的路径下,不影响系统已安装的Python目录。
安装好Anaconda后,重新打开命令行窗口,输入python,可以看到Anaconda的信息:
1 | ┌────────────────────────────────────────────────────────┐ |
可以尝试直接import numpy
等已安装的第三方模块。
模块搜索路径
当我们试图加载一个模块时,Python会在指定的路径下搜索对应的.py文件,如果找不到,就会报错:
1 | >>> import mymodule |
默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys
模块的path
变量中:
1 | >>> import sys |
如果我们要添加自己的搜索目录,有两种方法:
一是直接修改sys.path
,添加要搜索的目录:
1 | >>> import sys |
这种方法是在运行时修改,运行结束后失效。
第二种方法是设置环境变量PYTHONPATH
,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响。
面向对象编程
面向对象编程基础
私有属性
内部属性不被外部访问,可以把属性的名称前加上两个下划线__
,在Python中,实例的变量名如果以__
开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:
1 | class Student(object): |
改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name
和实例变量.__score
了:
1 | >>> bart = Student('Bart Simpson', 59) |
这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。
但是如果外部代码要获取name和score怎么办?可以给Student类增加get_name
和get_score
这样的方法:
1 | class Student(object): |
如果又要允许外部代码修改score怎么办?可以再给Student类增加set_score
方法:
1 | class Student(object): |
在Python中,变量名类似__xxx__
的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name__
、__score__
这样的变量名。
有些时候,你会看到以一个下划线开头的实例变量名,比如_name
,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。
双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name
是因为Python解释器对外把__name
变量改成了_Student__name
,所以,仍然可以通过_Student__name
来访问__name
变量:
1 | >>> bart._Student__name |
但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name
改成不同的变量名。
总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。
最后注意下面的这种错误写法:
1 | >>> bart = Student('Bart Simpson', 59) |
表面上看,外部代码“成功”地设置了__name
变量,但实际上这个__name
变量和class内部的__name
变量不是一个变量!内部的__name
变量已经被Python解释器自动改成了_Student__name
,而外部代码给bart
新增了一个__name
变量。不信试试:
1 | >>> bart.get_name() # get_name()内部返回self.__name |
获取对象信息
判断对象类型,使用type()
函数:
1 | >>> type(123) |
于class的继承关系来说,使用type()
就很不方便。我们要判断class的类型,可以使用isinstance()
函数。
1 | >>> isinstance('a', str) |
如果要获得一个对象的所有属性和方法,可以使用dir()
函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:
1 | >>> dir('ABC') |
仅仅把属性和方法列出来是不够的,配合getattr()
、setattr()
以及hasattr()
,我们可以直接操作一个对象的状态:
1 | >>> class MyObject(object): |
紧接着,可以测试该对象的属性:
1 | >>> hasattr(obj, 'x') # 有属性'x'吗? |
如果试图获取不存在的属性,会抛出AttributeError的错误:
1 | >>> getattr(obj, 'z') # 获取属性'z' |
可以传入一个default参数,如果属性不存在,就返回默认值:
1 | >>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404 |
也可以获得对象的方法:
1 | >>> hasattr(obj, 'power') # 有属性'power'吗? |
__slots__
正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。
尝试给实例绑定一个方法:
1 | >>> def set_age(self, age): # 定义一个函数作为实例方法 |
MethodType
方法详解和使用
公共代码部分
1 | #!/usr/bin/python |
第一种,给实例绑定一个方法:
1 | >>> one = Student() |
第二种,给类绑定一个方法:
1 | >>> Student.set_age = MethodType(set_age,Student) |
第三种,给类创建一个方法:
1 | >>> Student.set_age = set_age |
所以:用MethodType将方法绑定到类,并不是将这个方法直接写到类内部,而是在内存中创建一个link指向外部的方法,在创建实例的时候这个link也会被复制。通过该类创建的实例都会指向相同的区域,导致后面实例的值会覆盖前面实例的值。
但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加name
和age
属性。
为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__
变量,来限制该class实例能添加的属性:
1 | class Student(object): |
然后,我们试试:
1 | >>> s = Student() # 创建新的实例 |
由于'score'
没有被放到__slots__
中,所以不能绑定score
属性,试图绑定score
将得到AttributeError
的错误。
使用__slots__
要注意,__slots__
定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:
1 | >>> class GraduateStudent(Student): |
除非在子类中也定义__slots__
,这样,子类实例允许定义的属性就是自身的__slots__
加上父类的__slots__
。
多重继承
继承是面向对象编程的一个重要的方式,因为通过继承,子类就可以扩展父类的功能。
回忆一下Animal
类层次的设计,假设我们要实现以下4种动物:
- Dog - 狗狗;
- Bat - 蝙蝠;
- Parrot - 鹦鹉;
- Ostrich - 鸵鸟。
如果按照哺乳动物和鸟类归类,我们可以设计出这样的类的层次:
1 | ┌───────────────┐ |
但是如果按照“能跑”和“能飞”来归类,我们就应该设计出这样的类的层次:
1 | ┌───────────────┐ |
如果要把上面的两种分类都包含进来,我们就得设计更多的层次:
- 哺乳类:能跑的哺乳类,能飞的哺乳类;
- 鸟类:能跑的鸟类,能飞的鸟类。
这么一来,类的层次就复杂了:
1 | ┌───────────────┐ |
如果要再增加“宠物类”和“非宠物类”,这么搞下去,类的数量会呈指数增长,很明显这样设计是不行的。
正确的做法是采用多重继承。首先,主要的类层次仍按照哺乳类和鸟类设计:
1 | class Animal(object): |
现在,我们要给动物再加上Runnable
和Flyable
的功能,只需要先定义好Runnable
和Flyable
的类:
1 | class Runnable(object): |
对于需要Runnable
功能的动物,就多继承一个Runnable
,例如Dog
:
1 | class Dog(Mammal, Runnable): |
对于需要Flyable
功能的动物,就多继承一个Flyable
,例如Bat
:
1 | class Bat(Mammal, Flyable): |
通过多重继承,一个子类就可以同时获得多个父类的所有功能。
MixIn
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich
继承自Bird
。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich
除了继承自Bird
外,再同时继承Runnable
。这种设计通常称之为MixIn。
为了更好地看出继承关系,我们把Runnable
和Flyable
改为RunnableMixIn
和FlyableMixIn
。类似的,你还可以定义出肉食动物CarnivorousMixIn
和植食动物HerbivoresMixIn
,让某个动物同时拥有好几个MixIn:
1 | class Dog(Mammal, RunnableMixIn, CarnivorousMixIn): |
MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。
定制类
str
我们先定义一个Student
类,打印一个实例:
1 | >>> class Student(object): |
打印出一堆<__main__.Student object at 0x109afb190>
,不好看。
怎么才能打印得好看呢?只需要定义好__str__()
方法,返回一个好看的字符串就可以了:
1 | >>> class Student(object): |
这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。
但是细心的朋友会发现直接敲变量不用print
,打印出来的实例还是不好看:
1 | >>> s = Student('Michael') |
这是因为直接显示变量调用的不是__str__()
,而是__repr__()
,两者的区别是__str__()
返回用户看到的字符串,而__repr__()
返回程序开发者看到的字符串,也就是说,__repr__()
是为调试服务的。
解决办法是再定义一个__repr__()
。但是通常__str__()
和__repr__()
代码都是一样的,所以,有个偷懒的写法:
1 | class Student(object): |
iter
如果一个类想被用于for ... in
循环,类似list或tuple那样,就必须实现一个__iter__()
方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()
方法拿到循环的下一个值,直到遇到StopIteration
错误时退出循环。
我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:
1 | class Fib(object): |
现在,试试把Fib实例作用于for循环:
1 | >>> for n in Fib(): |
getitem
Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:
1 | >>> Fib()[5] |
要表现得像list那样按照下标取出元素,需要实现__getitem__()
方法:
1 | class Fib(object): |
现在,就可以按下标访问数列的任意一项了:
1 | >>> f = Fib() |
但是list有个神奇的切片方法:
1 | >>> list(range(100))[5:10] |
对于Fib却报错。原因是__getitem__()
传入的参数可能是一个int,也可能是一个切片对象slice
,所以要做判断:
1 | class Fib(object): |
现在试试Fib的切片:
1 | >>> f = Fib() |
但是没有对step参数作处理:
1 | >>> f[:10:2] |
也没有对负数作处理,所以,要正确实现一个__getitem__()
还是有很多工作要做的。
此外,如果把对象看成dict
,__getitem__()
的参数也可能是一个可以作key的object,例如str
。
与之对应的是__setitem__()
方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()
方法,用于删除某个元素。
总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。
getattr
正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student
类:
1 | class Student(object): |
调用name
属性,没问题,但是,调用不存在的score
属性,就有问题了:
1 | >>> s = Student() |
错误信息很清楚地告诉我们,没有找到score
这个attribute。
要避免这个错误,除了可以加上一个score
属性外,Python还有另一个机制,那就是写一个__getattr__()
方法,动态返回一个属性。修改如下:
1 | class Student(object): |
当调用不存在的属性时,比如score
,Python解释器会试图调用__getattr__(self, 'score')
来尝试获得属性,这样,我们就有机会返回score
的值:
1 | >>> s = Student() |
返回函数也是完全可以的:
1 | class Student(object): |
只是调用方式要变为:
1 | >>> s.age() |
注意,只有在没有找到属性的情况下,才调用__getattr__
,已有的属性,比如name
,不会在__getattr__
中查找。
此外,注意到任意调用如s.abc
都会返回None
,这是因为我们定义的__getattr__
默认返回就是None
。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError
的错误:
1 | class Student(object): |
这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。
这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。
举个例子:
现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:
如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。
利用完全动态的__getattr__
,我们可以写出一个链式调用:
1 | class Chain(object): |
试试:
1 | >>> Chain().status.user.timeline.list |
这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!
还有些REST API会把参数放到URL中,比如GitHub的API:
1 | GET /users/:user/repos |
调用时,需要把:user
替换为实际用户名。如果我们能写出这样的链式调用:
1 | Chain().users('michael').repos |
就可以非常方便地调用API了。有兴趣的童鞋可以试试写出来。
call
一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()
来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。
任何类,只需要定义一个__call__()
方法,就可以直接对实例进行调用。请看示例:
1 | class Student(object): |
调用方式如下:
1 | >>> s = Student('Michael') |
__call__()
还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。
如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。
那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个Callable
对象,比如函数和我们上面定义的带有__call__()
的类实例:
1 | >>> callable(Student()) |
通过callable()
函数,我们就可以判断一个对象是否是“可调用”对象。
枚举类
当我们需要定义常量时,一个办法是用大写变量通过整数来定义,例如月份:
1 | JAN = 1 |
好处是简单,缺点是类型是int
,并且仍然是变量。
更好的方法是为这样的枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例。Python提供了Enum
类来实现这个功能:
1 | from enum import Enum |
这样我们就获得了Month
类型的枚举类,可以直接使用Month.Jan
来引用一个常量,或者枚举它的所有成员:
1 | for name, member in Month.__members__.items(): |
value
属性则是自动赋给成员的int
常量,默认从1
开始计数。
如果需要更精确地控制枚举类型,可以从Enum
派生出自定义类:
1 | from enum import Enum, unique |
@unique
装饰器可以帮助我们检查保证没有重复值。
访问这些枚举类型可以有若干种方法:
1 | >>> day1 = Weekday.Mon |
可见,既可以用成员名称引用枚举常量,又可以直接根据value的值获得枚举常量。
元类
type()
动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。
比方说我们要定义一个Hello
的class,就写一个hello.py
模块:
1 | class Hello(object): |
当Python解释器载入hello
模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello
的class对象,测试如下:
1 | >>> from hello import Hello |
type()
函数可以查看一个类型或变量的类型,Hello
是一个class,它的类型就是type
,而h
是一个实例,它的类型就是class Hello
。
我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()
函数。
type()
函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()
函数创建出Hello
类,而无需通过class Hello(object)...
的定义:
1 | >>> def fn(self, name='world'): # 先定义函数 |
要创建一个class对象,type()
函数依次传入3个参数:
- class的名称;
- 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
- class的方法名称与函数绑定,这里我们把函数
fn
绑定到方法名hello
上。
通过type()
函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()
函数创建出class。
正常情况下,我们都用class Xxx...
来定义类,但是,type()
函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。
metaclass
除了使用type()
动态创建类以外,要控制类的创建行为,还可以使用metaclass。
metaclass,直译为元类,简单的解释就是:
当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。
但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。
连接起来就是:先定义metaclass,就可以创建类,最后创建实例。
所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。
metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。
我们先看一个简单的例子,这个metaclass可以给我们自定义的MyList增加一个add
方法:
定义ListMetaclass
,按照默认习惯,metaclass的类名总是以Metaclass结尾,以便清楚地表示这是一个metaclass:
1 | # metaclass是类的模板,所以必须从`type`类型派生: |
有了ListMetaclass,我们在定义类的时候还要指示使用ListMetaclass来定制类,传入关键字参数metaclass
:
1 | class MyList(list, metaclass=ListMetaclass): |
当我们传入关键字参数metaclass
时,魔术就生效了,它指示Python解释器在创建MyList
时,要通过ListMetaclass.__new__()
来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。
__new__()
方法接收到的参数依次是:
- 当前准备创建的类的对象;
- 类的名字;
- 类继承的父类集合;
- 类的方法集合。
测试一下MyList
是否可以调用add()
方法:
1 | >>> L = MyList() |
而普通的list
没有add()
方法:
1 | >>> L2 = list() |
动态修改有什么意义?直接在MyList
定义中写上add()
方法不是更简单吗?正常情况下,确实应该直接写,通过metaclass修改纯属变态。
但是,总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。
ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。
要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。
让我们来尝试编写一个ORM框架。
编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User
类来操作对应的数据库表User
,我们期待他写出这样的代码:
1 | class User(Model): |
其中,父类Model
和属性类型StringField
、IntegerField
是由ORM框架提供的,剩下的魔术方法比如save()
全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。
现在,我们就按上面的接口来实现该ORM。
首先来定义Field
类,它负责保存数据库表的字段名和字段类型:
1 | class Field(object): |
在Field
的基础上,进一步定义各种类型的Field
,比如StringField
,IntegerField
等等:
1 | class StringField(Field): |
下一步,就是编写最复杂的ModelMetaclass
了:
1 | class ModelMetaclass(type): |
以及基类Model
:
1 | class Model(dict, metaclass=ModelMetaclass): |
当用户定义一个class User(Model)
时,Python解释器首先在当前类User
的定义中查找metaclass
,如果没有找到,就继续在父类Model
中查找metaclass
,找到了,就使用Model
中定义的metaclass
的ModelMetaclass
来创建User
类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。
在ModelMetaclass
中,一共做了几件事情:
- 排除掉对
Model
类的修改; - 在当前类(比如
User
)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__
的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性); - 把表名保存到
__table__
中,这里简化为表名默认为类名。
在Model
类中,就可以定义各种操作数据库的方法,比如save()
,delete()
,find()
,update
等等。
我们实现了save()
方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT
语句。
编写代码试试:
1 | u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd') |
输出如下:
1 | Found model: User |
可以看到,save()
方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。
不到100行代码,我们就通过metaclass实现了一个精简的ORM框架,是不是非常简单?