Python模块及面向对象

模块(Module)

为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。在Python中,一个.py文件就称之为一个模块(Module)。

使用模块有什么好处?

最大的好处是大大提高了代码的可维护性。其次,编写代码不必从零开始。当一个模块编写完毕,就可以被其他地方引用。我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块。

使用模块还可以避免函数名和变量名冲突。相同名字的函数和变量完全可以分别存在不同的模块中,因此,我们自己在编写模块时,不必考虑名字会与其他模块冲突。但是也要注意,尽量不要与内置函数名字冲突。点这里查看Python的所有内置函数。

你也许还想到,如果不同的人编写的模块名相同怎么办?为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package)。

举个例子,一个abc.py的文件就是一个名字叫abc的模块,一个xyz.py的文件就是一个名字叫xyz的模块。

现在,假设我们的abcxyz这两个模块名字与其他模块冲突了,于是我们可以通过包来组织模块,避免冲突。方法是选择一个顶层包名,比如mycompany,按照如下目录存放:

1
2
3
4
mycompany
├─ __init__.py
├─ abc.py
└─ xyz.py

引入了包以后,只要顶层的包名不与别人冲突,那所有模块都不会与别人冲突。现在,abc.py模块的名字就变成了mycompany.abc,类似的,xyz.py的模块名变成了mycompany.xyz

请注意,每一个包目录下面都会有一个__init__.py的文件,这个文件是必须存在的,否则,Python就把这个目录当成普通目录,而不是一个包。__init__.py可以是空文件,也可以有Python代码,因为__init__.py本身就是一个模块,而它的模块名就是mycompany

类似的,可以有多级目录,组成多级层次的包结构。比如如下的目录结构:

1
2
3
4
5
6
7
8
mycompany
├─ web
│ ├─ __init__.py
│ ├─ utils.py
│ └─ www.py
├─ __init__.py
├─ abc.py
└─ xyz.py

文件www.py的模块名就是mycompany.web.www,两个文件utils.py的模块名分别是mycompany.utilsmycompany.web.utils

** 自己创建模块时要注意命名,不能和Python自带的模块名称冲突。例如,系统自带了sys模块,自己的模块就不可命名为sys.py,否则将无法导入系统自带的sys模块。

mycompany.web也是一个模块,请指出该模块对应的.py文件。

使用模块

Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用。

我们以内建的sys模块为例,编写一个hello的模块:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

' a test module '

__author__ = 'Michael Liao'

import sys

def test():
args = sys.argv
if len(args)==1:
print('Hello, world!')
elif len(args)==2:
print('Hello, %s!' % args[1])
else:
print('Too many arguments!')

if __name__=='__main__':
test()

第1行和第2行是标准注释,第1行注释可以让这个hello.py文件直接在Unix/Linux/Mac上运行,第2行注释表示.py文件本身使用标准UTF-8编码;

第4行是一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释;

第6行使用__author__变量把作者写进去,这样当你公开源代码后别人就可以瞻仰你的大名;

以上就是Python模块的标准文件模板,当然也可以全部删掉不写,但是,按标准办事肯定没错。

后面开始就是真正的代码部分。

你可能注意到了,使用sys模块的第一步,就是导入该模块:

1
import sys

导入sys模块后,我们就有了变量sys指向该模块,利用sys这个变量,就可以访问sys模块的所有功能。

sys模块有一个argv变量,用list存储了命令行的所有参数。argv至少有一个元素,因为第一个参数永远是该.py文件的名称,例如:

运行python3 hello.py获得的sys.argv就是['hello.py']

运行python3 hello.py Michael获得的sys.argv就是['hello.py', 'Michael]

最后,注意到这两行代码:

1
2
if __name__=='__main__':
test()

当我们在命令行运行hello模块文件时,Python解释器把一个特殊变量__name__置为__main__,而如果在其他地方导入该hello模块时,if判断将失败,因此,这种if测试可以让一个模块通过命令行运行时执行一些额外的代码,最常见的就是运行测试。

我们可以用命令行运行hello.py看看效果:

1
2
3
4
$ python3 hello.py
Hello, world!
$ python hello.py Michael
Hello, Michael!

如果启动Python交互环境,再导入hello模块:

1
2
3
4
5
6
$ python3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import hello
>>>

导入时,没有打印Hello, word!,因为没有执行test()函数。

调用hello.test()时,才能打印出Hello, word!

1
2
>>> hello.test()
Hello, world!

作用域

在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过_前缀来实现的。

正常的函数和变量名是公开的(public),可以被直接引用,比如:abcx123PI等;

类似__xxx__这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的__author____name__就是特殊变量,hello模块定义的文档注释也可以用特殊变量__doc__访问,我们自己的变量一般不要用这种变量名;

类似_xxx__xxx这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc__abc等;

之所以我们说,private函数和变量“不应该”被直接引用,而不是“不能”被直接引用,是因为Python并没有一种方法可以完全限制访问private函数或变量,但是,从编程习惯上不应该引用private函数或变量。

private函数或变量不应该被别人引用,那它们有什么用呢?请看例子:

1
2
3
4
5
6
7
8
9
10
11
def _private_1(name):
return 'Hello, %s' % name

def _private_2(name):
return 'Hi, %s' % name

def greeting(name):
if len(name) > 3:
return _private_1(name)
else:
return _private_2(name)

我们在模块里公开greeting()函数,而把内部逻辑用private函数隐藏起来了,这样,调用greeting()函数不用关心内部的private函数细节,这也是一种非常有用的代码封装和抽象的方法,即:

外部不需要引用的函数全部定义成private,只有外部需要引用的函数才定义为public。

第三方模块

在Python中,安装第三方模块,是通过包管理工具pip完成的。

如果你正在使用Mac或Linux,安装pip本身这个步骤就可以跳过了。

如果你正在使用Windows,请参考安装Python一节的内容,确保安装时勾选了pipAdd python.exe to Path

在命令提示符窗口下尝试运行pip,如果Windows提示未找到命令,可以重新运行安装程序添加pip

注意:Mac或Linux上有可能并存Python 3.x和Python 2.x,因此对应的pip命令是pip3

例如,我们要安装一个第三方库——Python Imaging Library,这是Python下非常强大的处理图像的工具库。不过,PIL目前只支持到Python 2.7,并且有年头没有更新了,因此,基于PIL的Pillow项目开发非常活跃,并且支持最新的Python 3。

一般来说,第三方库都会在Python官方的pypi.python.org网站注册,要安装一个第三方库,必须先知道该库的名称,可以在官网或者pypi上搜索,比如Pillow的名称叫Pillow,因此,安装Pillow的命令就是:

1
pip install Pillow

耐心等待下载并安装后,就可以使用Pillow了。

且慢

安装常用模块

在使用Python时,我们经常需要用到很多第三方库,例如,上面提到的Pillow,以及MySQL驱动程序,Web框架Flask,科学计算Numpy等。用pip一个一个安装费时费力,还需要考虑兼容性。我们推荐直接使用Anaconda,这是一个基于Python的数据处理和科学计算平台,它已经内置了许多非常有用的第三方库,我们装上Anaconda,就相当于把数十个第三方模块自动安装好了,非常简单易用。

可以从Anaconda官网下载GUI安装包,安装包有500~600M,所以需要耐心等待下载。网速慢的同学请移步国内镜像。下载后直接安装,Anaconda会把系统Path中的python指向自己自带的Python,并且,Anaconda安装的第三方模块会安装在Anaconda自己的路径下,不影响系统已安装的Python目录。

安装好Anaconda后,重新打开命令行窗口,输入python,可以看到Anaconda的信息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
┌────────────────────────────────────────────────────────┐
│Command Prompt - python - □ x │
├────────────────────────────────────────────────────────┤
│Microsoft Windows [Version 10.0.0] │
│(c) 2015 Microsoft Corporation. All rights reserved. │
│ │
│C:\> python │
│Python 3.6.3 |Anaconda, Inc.| ... on win32 │
│Type "help", ... for more information. │
│>>> import numpy │
│>>> _ │
│ │
│ │
│ │
└────────────────────────────────────────────────────────┘

可以尝试直接import numpy等已安装的第三方模块。

模块搜索路径

当我们试图加载一个模块时,Python会在指定的路径下搜索对应的.py文件,如果找不到,就会报错:

1
2
3
4
>>> import mymodule
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named mymodule

默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys模块的path变量中:

1
2
3
>>> import sys
>>> sys.path
['', '/Library/Frameworks/Python.framework/Versions/3.6/lib/python36.zip', '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6', ..., '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages']

如果我们要添加自己的搜索目录,有两种方法:

一是直接修改sys.path,添加要搜索的目录:

1
2
>>> import sys
>>> sys.path.append('/Users/michael/my_py_scripts')

这种方法是在运行时修改,运行结束后失效。

第二种方法是设置环境变量PYTHONPATH,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响。

面向对象编程

面向对象编程基础

私有属性

内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:

1
2
3
4
5
6
7
8
class Student(object):

def __init__(self, name, score):
self.__name = name
self.__score = score

def print_score(self):
print('%s: %s' % (self.__name, self.__score))

改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name实例变量.__score了:

1
2
3
4
5
>>> bart = Student('Bart Simpson', 59)
>>> bart.__name
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute '__name'

这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。

但是如果外部代码要获取name和score怎么办?可以给Student类增加get_nameget_score这样的方法:

1
2
3
4
5
6
7
8
class Student(object):
...

def get_name(self):
return self.__name

def get_score(self):
return self.__score

如果又要允许外部代码修改score怎么办?可以再给Student类增加set_score方法:

1
2
3
4
5
class Student(object):
...

def set_score(self, score):
self.__score = score

在Python中,变量名类似__xxx__的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name____score__这样的变量名。

有些时候,你会看到以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。

双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name是因为Python解释器对外把__name变量改成了_Student__name,所以,仍然可以通过_Student__name来访问__name变量:

1
2
>>> bart._Student__name
'Bart Simpson'

但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name改成不同的变量名。

总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。

最后注意下面的这种错误写法

1
2
3
4
5
6
>>> bart = Student('Bart Simpson', 59)
>>> bart.get_name()
'Bart Simpson'
>>> bart.__name = 'New Name' # 设置__name变量!
>>> bart.__name
'New Name'

表面上看,外部代码“成功”地设置了__name变量,但实际上这个__name变量和class内部的__name变量不是一个变量!内部的__name变量已经被Python解释器自动改成了_Student__name,而外部代码给bart新增了一个__name变量。不信试试:

1
2
>>> bart.get_name() # get_name()内部返回self.__name
'Bart Simpson'

获取对象信息

判断对象类型,使用type()函数:

1
2
3
4
5
6
>>> type(123)
<class 'int'>
>>> type('str')
<class 'str'>
>>> type(None)
<type(None) 'NoneType'>

于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。

1
2
3
4
5
6
>>> isinstance('a', str)
True
>>> isinstance(123, int)
True
>>> isinstance(b'a', bytes)
True

如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:

1
2
>>> dir('ABC')
['__add__', '__class__',..., '__subclasshook__', 'capitalize', 'casefold',..., 'zfill']

仅仅把属性和方法列出来是不够的,配合getattr()setattr()以及hasattr(),我们可以直接操作一个对象的状态:

1
2
3
4
5
6
7
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()

紧接着,可以测试该对象的属性:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19

如果试图获取不存在的属性,会抛出AttributeError的错误:

1
2
3
4
>>> getattr(obj, 'z') # 获取属性'z'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'MyObject' object has no attribute 'z'

可以传入一个default参数,如果属性不存在,就返回默认值:

1
2
>>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404
404

也可以获得对象的方法:

1
2
3
4
5
6
7
8
9
>>> hasattr(obj, 'power') # 有属性'power'吗?
True
>>> getattr(obj, 'power') # 获取属性'power'
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn
>>> fn # fn指向obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn() # 调用fn()与调用obj.power()是一样的
81

__slots__

正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。

尝试给实例绑定一个方法:

1
2
3
4
5
6
7
8
>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25

MethodType方法详解和使用

公共代码部分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/usr/bin/python
# -*-coding:utf-8-*-

from types import MethodType
"""
文件名 class2.py
MethodType 测试
"""
# 首先看第一种方式
#创建一个方法
def set_age(self, arg):
self.age = arg
#创建一个类
class Student(object):
pass

第一种,给实例绑定一个方法:

1
2
3
4
5
6
7
8
9
10
11
>>> one = Student()
>>> one.set_age = MethodType(set_age,one)
>>> one.set_age(23)
>>> one.age
23
>>> two = Student()
>>> two.set_age(24)
Traceback (most recent call last):
File "<pyshell#47>", line 1, in <module>
two.set_age(24)
AttributeError: 'Student' object has no attribute 'set_age'

第二种,给类绑定一个方法:

1
2
3
4
5
6
7
8
>>> Student.set_age = MethodType(set_age,Student)
>>> one = Student()
>>> two = Student()
>>> three = Student()
>>> one.set_age(100)
>>> two.set_age(10)
>>> print('one age:', one.age, 'two age:', two.age, 'three age:', three.age)
one age: 10 two age: 10 three age: 10

第三种,给类创建一个方法:

1
2
3
4
5
6
7
>>> Student.set_age = set_age
>>> one = Student()
>>> two = Student()
>>> one.set_age(100)
>>> two.set_age(10)
>>> print('one age:', one.age, 'two age:', two.age)
one age: 100 two age: 10

所以:用MethodType将方法绑定到类,并不是将这个方法直接写到类内部,而是在内存中创建一个link指向外部的方法,在创建实例的时候这个link也会被复制。通过该类创建的实例都会指向相同的区域,导致后面实例的值会覆盖前面实例的值。

但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加nameage属性。

为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:

1
2
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称

然后,我们试试:

1
2
3
4
5
6
7
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。

使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:

1
2
3
4
5
>>> class GraduateStudent(Student):
... pass
...
>>> g = GraduateStudent()
>>> g.score = 9999

除非在子类中也定义__slots__,这样,子类实例允许定义的属性就是自身的__slots__加上父类的__slots__

多重继承

继承是面向对象编程的一个重要的方式,因为通过继承,子类就可以扩展父类的功能。

回忆一下Animal类层次的设计,假设我们要实现以下4种动物:

  • Dog - 狗狗;
  • Bat - 蝙蝠;
  • Parrot - 鹦鹉;
  • Ostrich - 鸵鸟。

如果按照哺乳动物和鸟类归类,我们可以设计出这样的类的层次:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
                ┌───────────────┐
│ Animal │
└───────────────┘

┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Mammal │ │ Bird │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Bat │ │ Parrot │ │ Ostrich │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

但是如果按照“能跑”和“能飞”来归类,我们就应该设计出这样的类的层次:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
                ┌───────────────┐
│ Animal │
└───────────────┘

┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Runnable │ │ Flyable │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Ostrich │ │ Parrot │ │ Bat │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

如果要把上面的两种分类都包含进来,我们就得设计更多的层次:

  • 哺乳类:能跑的哺乳类,能飞的哺乳类;
  • 鸟类:能跑的鸟类,能飞的鸟类。

这么一来,类的层次就复杂了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
                ┌───────────────┐
│ Animal │
└───────────────┘

┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Mammal │ │ Bird │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ MRun │ │ MFly │ │ BRun │ │ BFly │
└─────────┘ └─────────┘ └─────────┘ └─────────┘
│ │ │ │
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Bat │ │ Ostrich │ │ Parrot │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

如果要再增加“宠物类”和“非宠物类”,这么搞下去,类的数量会呈指数增长,很明显这样设计是不行的。

正确的做法是采用多重继承。首先,主要的类层次仍按照哺乳类和鸟类设计:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Animal(object):
pass

# 大类:
class Mammal(Animal):
pass

class Bird(Animal):
pass

# 各种动物:
class Dog(Mammal):
pass

class Bat(Mammal):
pass

class Parrot(Bird):
pass

class Ostrich(Bird):
pass

现在,我们要给动物再加上RunnableFlyable的功能,只需要先定义好RunnableFlyable的类:

1
2
3
4
5
6
7
class Runnable(object):
def run(self):
print('Running...')

class Flyable(object):
def fly(self):
print('Flying...')

对于需要Runnable功能的动物,就多继承一个Runnable,例如Dog

1
2
class Dog(Mammal, Runnable):
pass

对于需要Flyable功能的动物,就多继承一个Flyable,例如Bat

1
2
class Bat(Mammal, Flyable):
pass

通过多重继承,一个子类就可以同时获得多个父类的所有功能。

MixIn

在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为MixIn。

为了更好地看出继承关系,我们把RunnableFlyable改为RunnableMixInFlyableMixIn。类似的,你还可以定义出肉食动物CarnivorousMixIn和植食动物HerbivoresMixIn,让某个动物同时拥有好几个MixIn:

1
2
class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
pass

MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。

定制类

str

我们先定义一个Student类,打印一个实例:

1
2
3
4
5
6
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print(Student('Michael'))
<__main__.Student object at 0x109afb190>

打印出一堆<__main__.Student object at 0x109afb190>,不好看。

怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了:

1
2
3
4
5
6
7
8
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)

这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。

但是细心的朋友会发现直接敲变量不用print,打印出来的实例还是不好看:

1
2
3
>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>

这是因为直接显示变量调用的不是__str__(),而是__repr__(),两者的区别是__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,__repr__()是为调试服务的。

解决办法是再定义一个__repr__()。但是通常__str__()__repr__()代码都是一样的,所以,有个偷懒的写法:

1
2
3
4
5
6
class Student(object):
def __init__(self, name):
self.name = name
def __str__(self):
return 'Student object (name=%s)' % self.name
__repr__ = __str__

iter

如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。

我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:

1
2
3
4
5
6
7
8
9
10
11
12
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b

def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己

def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration()
return self.a # 返回下一个值

现在,试试把Fib实例作用于for循环:

1
2
3
4
5
6
7
8
9
10
11
>>> for n in Fib():
... print(n)
...
1
1
2
3
5
...
46368
75025

getitem

Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:

1
2
3
4
>>> Fib()[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing

要表现得像list那样按照下标取出元素,需要实现__getitem__()方法:

1
2
3
4
5
6
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a

现在,就可以按下标访问数列的任意一项了:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101

但是list有个神奇的切片方法:

1
2
>>> list(range(100))[5:10]
[5, 6, 7, 8, 9]

对于Fib却报错。原因是__getitem__()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Fib(object):
def __getitem__(self, n):
if isinstance(n, int): # n是索引
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
if isinstance(n, slice): # n是切片
start = n.start
stop = n.stop
if start is None:
start = 0
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L

现在试试Fib的切片:

1
2
3
4
5
>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5]
>>> f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

但是没有对step参数作处理:

1
2
>>> f[:10:2]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

也没有对负数作处理,所以,要正确实现一个__getitem__()还是有很多工作要做的。

此外,如果把对象看成dict__getitem__()的参数也可能是一个可以作key的object,例如str

与之对应的是__setitem__()方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()方法,用于删除某个元素。

总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。

getattr

正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student类:

1
2
3
4
class Student(object):

def __init__(self):
self.name = 'Michael'

调用name属性,没问题,但是,调用不存在的score属性,就有问题了:

1
2
3
4
5
6
7
>>> s = Student()
>>> print(s.name)
Michael
>>> print(s.score)
Traceback (most recent call last):
...
AttributeError: 'Student' object has no attribute 'score'

错误信息很清楚地告诉我们,没有找到score这个attribute。

要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:

1
2
3
4
5
6
7
8
class Student(object):

def __init__(self):
self.name = 'Michael'

def __getattr__(self, attr):
if attr=='score':
return 99

当调用不存在的属性时,比如score,Python解释器会试图调用__getattr__(self, 'score')来尝试获得属性,这样,我们就有机会返回score的值:

1
2
3
4
5
>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99

返回函数也是完全可以的:

1
2
3
4
5
class Student(object):

def __getattr__(self, attr):
if attr=='age':
return lambda: 25

只是调用方式要变为:

1
2
>>> s.age()
25

注意,只有在没有找到属性的情况下,才调用__getattr__,已有的属性,比如name,不会在__getattr__中查找。

此外,注意到任意调用如s.abc都会返回None,这是因为我们定义的__getattr__默认返回就是None。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError的错误:

1
2
3
4
5
6
class Student(object):

def __getattr__(self, attr):
if attr=='age':
return lambda: 25
raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)

这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。

这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。

举个例子:

现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:

如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。

利用完全动态的__getattr__,我们可以写出一个链式调用:

1
2
3
4
5
6
7
8
9
10
11
12
class Chain(object):

def __init__(self, path=''):
self._path = path

def __getattr__(self, path):
return Chain('%s/%s' % (self._path, path))

def __str__(self):
return self._path

__repr__ = __str__

试试:

1
2
>>> Chain().status.user.timeline.list
'/status/user/timeline/list'

这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!

还有些REST API会把参数放到URL中,比如GitHub的API:

1
GET /users/:user/repos

调用时,需要把:user替换为实际用户名。如果我们能写出这样的链式调用:

1
Chain().users('michael').repos

就可以非常方便地调用API了。有兴趣的童鞋可以试试写出来。

call

一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。

任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。请看示例:

1
2
3
4
5
6
class Student(object):
def __init__(self, name):
self.name = name

def __call__(self):
print('My name is %s.' % self.name)

调用方式如下:

1
2
3
>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.

__call__()还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。

如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。

那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个Callable对象,比如函数和我们上面定义的带有__call__()的类实例:

1
2
3
4
5
6
7
8
9
10
>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('str')
False

通过callable()函数,我们就可以判断一个对象是否是“可调用”对象。

枚举类

当我们需要定义常量时,一个办法是用大写变量通过整数来定义,例如月份:

1
2
3
4
5
6
JAN = 1
FEB = 2
MAR = 3
...
NOV = 11
DEC = 12

好处是简单,缺点是类型是int,并且仍然是变量。

更好的方法是为这样的枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例。Python提供了Enum类来实现这个功能:

1
2
3
from enum import Enum

Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))

这样我们就获得了Month类型的枚举类,可以直接使用Month.Jan来引用一个常量,或者枚举它的所有成员:

1
2
for name, member in Month.__members__.items():
print(name, '=>', member, ',', member.value)

value属性则是自动赋给成员的int常量,默认从1开始计数。

如果需要更精确地控制枚举类型,可以从Enum派生出自定义类:

1
2
3
4
5
6
7
8
9
10
11
from enum import Enum, unique

@unique
class Weekday(Enum):
Sun = 0 # Sun的value被设定为0
Mon = 1
Tue = 2
Wed = 3
Thu = 4
Fri = 5
Sat = 6

@unique装饰器可以帮助我们检查保证没有重复值。

访问这些枚举类型可以有若干种方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
>>> day1 = Weekday.Mon
>>> print(day1)
Weekday.Mon
>>> print(Weekday.Tue)
Weekday.Tue
>>> print(Weekday['Tue'])
Weekday.Tue
>>> print(Weekday.Tue.value)
2
>>> print(day1 == Weekday.Mon)
True
>>> print(day1 == Weekday.Tue)
False
>>> print(Weekday(1))
Weekday.Mon
>>> print(day1 == Weekday(1))
True
>>> Weekday(7)
Traceback (most recent call last):
...
ValueError: 7 is not a valid Weekday
>>> for name, member in Weekday.__members__.items():
... print(name, '=>', member)
...
Sun => Weekday.Sun
Mon => Weekday.Mon
Tue => Weekday.Tue
Wed => Weekday.Wed
Thu => Weekday.Thu
Fri => Weekday.Fri
Sat => Weekday.Sat

可见,既可以用成员名称引用枚举常量,又可以直接根据value的值获得枚举常量。

元类

type()

动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。

比方说我们要定义一个Hello的class,就写一个hello.py模块:

1
2
3
class Hello(object):
def hello(self, name='world'):
print('Hello, %s.' % name)

当Python解释器载入hello模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello的class对象,测试如下:

1
2
3
4
5
6
7
8
>>> from hello import Hello
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class 'type'>
>>> print(type(h))
<class 'hello.Hello'>

type()函数可以查看一个类型或变量的类型,Hello是一个class,它的类型就是type,而h是一个实例,它的类型就是class Hello

我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数。

type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数创建出Hello类,而无需通过class Hello(object)...的定义:

1
2
3
4
5
6
7
8
9
10
11
>>> def fn(self, name='world'): # 先定义函数
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class 'type'>
>>> print(type(h))
<class '__main__.Hello'>

要创建一个class对象,type()函数依次传入3个参数:

  1. class的名称;
  2. 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
  3. class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。

通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。

正常情况下,我们都用class Xxx...来定义类,但是,type()函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。

metaclass

除了使用type()动态创建类以外,要控制类的创建行为,还可以使用metaclass。

metaclass,直译为元类,简单的解释就是:

当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。

但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。

连接起来就是:先定义metaclass,就可以创建类,最后创建实例。

所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。

metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。

我们先看一个简单的例子,这个metaclass可以给我们自定义的MyList增加一个add方法:

定义ListMetaclass,按照默认习惯,metaclass的类名总是以Metaclass结尾,以便清楚地表示这是一个metaclass:

1
2
3
4
5
# metaclass是类的模板,所以必须从`type`类型派生:
class ListMetaclass(type):
def __new__(cls, name, bases, attrs):
attrs['add'] = lambda self, value: self.append(value)
return type.__new__(cls, name, bases, attrs)

有了ListMetaclass,我们在定义类的时候还要指示使用ListMetaclass来定制类,传入关键字参数metaclass

1
2
class MyList(list, metaclass=ListMetaclass):
pass

当我们传入关键字参数metaclass时,魔术就生效了,它指示Python解释器在创建MyList时,要通过ListMetaclass.__new__()来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。

__new__()方法接收到的参数依次是:

  1. 当前准备创建的类的对象;
  2. 类的名字;
  3. 类继承的父类集合;
  4. 类的方法集合。

测试一下MyList是否可以调用add()方法:

1
2
3
4
>>> L = MyList()
>>> L.add(1)
>> L
[1]

而普通的list没有add()方法:

1
2
3
4
5
>>> L2 = list()
>>> L2.add(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'add'

动态修改有什么意义?直接在MyList定义中写上add()方法不是更简单吗?正常情况下,确实应该直接写,通过metaclass修改纯属变态。

但是,总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。

ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。

要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。

让我们来尝试编写一个ORM框架。

编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User类来操作对应的数据库表User,我们期待他写出这样的代码:

1
2
3
4
5
6
7
8
9
10
11
class User(Model):
# 定义类的属性到列的映射:
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password')

# 创建一个实例:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
# 保存到数据库:
u.save()

其中,父类Model和属性类型StringFieldIntegerField是由ORM框架提供的,剩下的魔术方法比如save()全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。

现在,我们就按上面的接口来实现该ORM。

首先来定义Field类,它负责保存数据库表的字段名和字段类型:

1
2
3
4
5
6
7
8
class Field(object):

def __init__(self, name, column_type):
self.name = name
self.column_type = column_type

def __str__(self):
return '<%s:%s>' % (self.__class__.__name__, self.name)

Field的基础上,进一步定义各种类型的Field,比如StringFieldIntegerField等等:

1
2
3
4
5
6
7
8
9
class StringField(Field):

def __init__(self, name):
super(StringField, self).__init__(name, 'varchar(100)')

class IntegerField(Field):

def __init__(self, name):
super(IntegerField, self).__init__(name, 'bigint')

下一步,就是编写最复杂的ModelMetaclass了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class ModelMetaclass(type):

def __new__(cls, name, bases, attrs):
if name=='Model':
return type.__new__(cls, name, bases, attrs)
print('Found model: %s' % name)
mappings = dict()
for k, v in attrs.items():
if isinstance(v, Field):
print('Found mapping: %s ==> %s' % (k, v))
mappings[k] = v
for k in mappings.keys():
attrs.pop(k)
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
attrs['__table__'] = name # 假设表名和类名一致
return type.__new__(cls, name, bases, attrs)

以及基类Model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Model(dict, metaclass=ModelMetaclass):

def __init__(self, **kw):
super(Model, self).__init__(**kw)

def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key)

def __setattr__(self, key, value):
self[key] = value

def save(self):
fields = []
params = []
args = []
for k, v in self.__mappings__.items():
fields.append(v.name)
params.append('?')
args.append(getattr(self, k, None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args))

当用户定义一个class User(Model)时,Python解释器首先在当前类User的定义中查找metaclass,如果没有找到,就继续在父类Model中查找metaclass,找到了,就使用Model中定义的metaclassModelMetaclass来创建User类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。

ModelMetaclass中,一共做了几件事情:

  1. 排除掉对Model类的修改;
  2. 在当前类(比如User)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);
  3. 把表名保存到__table__中,这里简化为表名默认为类名。

Model类中,就可以定义各种操作数据库的方法,比如save()delete()find()update等等。

我们实现了save()方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT语句。

编写代码试试:

1
2
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
u.save()

输出如下:

1
2
3
4
5
6
7
Found model: User
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: id ==> <IntegerField:uid>
Found mapping: name ==> <StringField:username>
SQL: insert into User (password,email,username,id) values (?,?,?,?)
ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]

可以看到,save()方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。

不到100行代码,我们就通过metaclass实现了一个精简的ORM框架,是不是非常简单?